If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120x+2x^2=0
a = 2; b = 120; c = 0;
Δ = b2-4ac
Δ = 1202-4·2·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-120}{2*2}=\frac{-240}{4} =-60 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+120}{2*2}=\frac{0}{4} =0 $
| 2^4x=21 | | 13=5x-27 | | 21x-3(2)=57 | | 6-z=24 | | (n-3)(n-4)=20 | | X^2=12x+30 | | 2r^2+14r+20=0 | | -6x+7(1-x)=4(x-4) | | 4x+18=78 | | n/5+7=21 | | 3n+6+4n=15 | | (x-2)×5=10×2 | | -6x+7x(1-x)=4(x-4) | | 56k−5=10 | | -36=6(2-8n | | 1/9(x+5)=6 | | 7v^2+40v=-25 | | m2+33m=0 | | 4x+7=7(×+1)-3× | | (25+6i)-(33+14i)=0 | | (10t+8/6)-4=2t+2 | | 2a+3/a=5 | | 2(2y-3)-6=30 | | 8x-(7x+2)=2x-11 | | 9x–(5x+1)–(2+8x+7x–5)+9x=0 | | 5x-1=3+× | | 6(b+5)=8 | | 5(1+5n)-3n=115 | | 2(2x+5)=55 | | 42=15x-9x | | 3(x-7)+2x=9-x | | 4x^2+2x^2-7x-10=0 |